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Abstract

Imagine a learning game, where a human teacher explains something by drawing on a

whiteboard and a robot follows the explanation. To realize this scenario, the robot needs

a visual processing module which can identify and categorize drawn symbols. One way of

implementing such a module is by using an active vision process, inspired by biological

systems. Such a process can be realized using recurrent neural networks. In this thesis,

such networks which categorize symbols in images are evolved using artificial evolution.

The networks move a small window over the image by actively determining the next

position of this window. They ”scan” the image and identify the depicted symbol. The

implementation of the neural networks and of the artificial evolution process is described

in detail. Furthermore, two strategies for finding appropriate networks are presented and

compared. The results of the evolutionary process are integrated in a framework for the

learning scenario, in which the recurrent neural networks are used to detect and categorize

3 symbols.

Kurzfassung

Stellen Sie sich ein Lernspiel vor, bei dem ein menschlicher Lehrer etwas erklärt, indem er

auf ein Whiteboard zeichnet und ein Roboter der Erklärung folgt. Um dieses Szenario real-

isieren zu können, benötigt der Roboter ein visuelles Verarbeitungsmodul, das gezeichnete

Symbole identifizieren und kategorisieren kann. Eine Möglichkeit solch ein Modul zu im-

plementieren, besteht darin, einen von biologischen Systemen inspirierten ”Active Vision”

Prozess zu nutzen. Dieser Prozess kann mit Hilfe rekurrenter neuronaler Netze realisiert

werden. In dieser Arbeit werden solche Netze, die Symbole in Bildern kategorisieren, mit

Hilfe von künstlicher Evolution entwickelt. Die Netzwerke bewegen ein kleines Fenster

über das Bild indem sie aktiv die nächste Position dieses Fensters bestimmen. Sie ”scan-

nen” das Bild und bestimmen das gezeigte Symbol. Die Implementierung der neuronalen

Netze und des künstlichen Evolutionsprozesses wird ausführlich beschrieben. Außerdem

werden zwei Strategien zum Finden geeigneter Netzwerke vorgestellt und verglichen. Die

Ergebnisse des Evolutionsprozesses werden in ein Framework für das Lernspiel eingebaut,

in dem die rekurrenten neuronalen Netze für die Identifizierung und Kategorisierung von

3 Symbolen verwendet werden.
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1 Introduction

For a humanoid robot to cope with the complexity of our world, especially human envi-

ronments, it needs a coherent perception of its surrounding. This includes visual stimuli,

auditory input and also proprioception (the sense for body posture and self movement).

One step towards the perception of the environment consists of enabling the robot to

learn from visual stimuli. Consider the setup of a robot in front of a whiteboard, where

a human teacher explains something in a learning scenario. In order to follow the ex-

planation, the robot needs to perceive the symbols drawn on the whiteboard. With this

learning scenario as long term goal in mind, the first step in this direction is the visual

categorization of symbols. This thesis focuses on developing a module for processing these

visual symbols by using an active vision mechanism. Active vision belongs to the broader

field of active perception. Active perception means, that an agent, perceiving sensory

data from its environment, actively manipulates its behavior to increase the information

content it receives through its sensors ([Bajcsy, 1988], [Bajcsy et al., 2018]).

When only the visual channel is used, the perception mechanism is called active vision.

This process is studied in humans for example in the field of eye movements [Wurtz,

2015]. Figure 1.1 shows an example of the sequential changes in the direction of gaze of

human subjects inspecting a painting. The dots represent fixation points and the lines

the trajectories of eye movements.

Similar to the changing direction of gaze in humans, in this work, an agent moves a

small window of a few pixels over a much larger image and therefore changes its own

sensory input. This input in turn influences the agents state and therefore it’t motor

outputs (which move again the window). This connection between sensor input and

motor output is referred to as sensorimotor coupling [Di Paolo et al., 2017] or sensor-

motor-sensor triples (SMS triple as in [Dörner, 1999]). According to the sensorimotor

coupling theory knowledge is always a sensory stimuli intertwined with active behavior of

an agent.
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1.1. Structure of this work

Figure 1.1: A picture of a painting with overlayed trajectories of eye move-
ments as lines and fixation points as white dots. (Taken from [Wurtz, 2015])

In this work, the agent ”explores” a given image and determines if there is a particular

symbol present and to which category it belongs to. This agent is realized as a recurrent

neural network. To find such an agent, which is capable of this task, artificial evolution is

used. Two different approaches are explored and evaluated and finally, a working system

for the learning scenario is constructed.

1.1 Structure of this work

In the next section, related work and the literature serving as basis for this thesis is

presented. Chapter 2 presents the theoretical foundations including dynamical systems

theory, recurrent neural networks and artificial evolution. In chapter 3, the implemen-

tation of these networks and the technical details of the artificial evolution is described.

Then follows chapter 4, in which the experiments and their main outcomes are presented.

This chapter is divided into two sub-parts each describing different approaches, showing

the results and discussing them. In chapter 5 the evolved recurrent neural networks are

2



1.2. Related work

included into an real world application. Chapter 6 summarizes this work and presents

specific ideas for future work and improvements for the presented ideas.

1.2 Related work

The usage of recurrent neural networks as dynamical controllers solving different tasks

as described above was demonstrated in a lot of works, from which the most related are

presented in this section. Over twenty years ago, Tani used a recurrent neural network

and its attractor dynamics to navigate a wheeled robot by using only local sensor infor-

mation [Tani, 1996]. In later work [Tani and Nolfi, 1999] this framework was extended

and it was shown, that the location of the robot (either room A or room B) is represented

in the dynamics of the neural network. In more recent works (e.g. [Yamashita and Tani,

2008]), he and colleagues extended the recurrent neural network to multiple timescales,

where different parts of the network are updated slower or faster (3 update rates). They

showed the usefulness of their approach in experiments with humanoid robots. [Heinrich

and Wermter, 2018] used these multiple timescale networks and extended them to incor-

porate the somatosensory (body), auditory and visual perception into one representation

to control a humanoid robot in an multimodal language acquisition scenario.

The combination of recurrent neural networks and artificial evolution was studied in

several works by Beer. In [Beer, 2003] he evolved neural agents which can move one

dimensional in horizontal direction and have 7 distance sensors. Their task is to categorize

vertically falling objects into circles or diamonds and catch the circles but avoid the

diamonds. He then provides extensive and exemplary analyses of the evolved agents. This

work was later supplemented with even more detailed analyses ([Williams et al., 2008],

[Beer and Williams, 2015]). Another very interesting setting is presented in [Agmon and

Beer, 2014], where the agents have (simplified) chemical sensors and need to find sources of

nutrition. One of the main schemes is, that cognition and behavior arises from interaction

and feedback between organism and environment.

Most related to this thesis is the approach of [Floreano et al., 2004]. The authors evolved

recurrent neural networks for an active vision task. This task consists of classifying a

symbol shown in an image. The image is 320x240 pixels and shows either a black square

or a black triangle on white background. They also introduce some noise by switching the

value of some pixels with a small probability. Their neural networks get as input a 3x3
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1.2. Related work

pixel window, where each of the pixels has a receptive field containing a varying number

of pixels from the original image. One additional input is active, if the window is on the

border of the image and not active otherwise. The network has 6 output neurons, two

represent square and triangle respectively, one sets the zoom factor (one cell of the retina

spans either 5x5, 10x10 or 20x20 pixels) and one selects the activation method of the visual

neurons (either average of all input pixels ind the receptive field or the value of the top left

pixel). Their experiments showed that evolved agents were able to discriminate between

squares and triangles with 100% accuracy. Some ideas from this and the aforementioned

works are adopted for this thesis as follows:

In this work, recurrent neural networks for the discrimination of symbols are evolved.

Similarly as in [Floreano et al., 2004], the networks also get as input a small window of

the total image and can move this window horizontally and vertically. In contrary to

[Floreano et al., 2004], the cells of the window have only one pixel as receptive field. The

networks cannot change the zoom factor. Additionally they cannot change the activation

method. Another difference is the size of the network. In [Floreano et al., 2004] the size

is fixed, whereas in this work, the neural networks can grow as required. The analyses of

the networks in this thesis take [Beer, 2003] as model to shed some light on the internal

dynamics of the evolved agents.
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2 Theory of dynamical systems and

recurrent neural networks

This chapter deals with the theoretical foundations for the presented thesis. After a

brief introduction into the theory of dynamical systems, recurrent neural networks are

introduced formally as examples of such systems. Some simple architectures are described,

which will be helpful in understanding the functional parts of bigger networks. These

simple architectures can be seen as modules with specific functionalities. In the rest

of the chapter, artificial evolution as mechanism to find networks, capable of solving a

defined task is introduced. In particular, the method of gradually evolving increasingly

complex agents is described.

2.1 Dynamical systems theory

Recurrent neural networks can be seen as more or less complex systems having a time

dependent state. To describe these networks, along with many other time dependent

phenomena, dynamical systems theory is used [Strogatz, 1994]. This section introduces

this theory along with it’s important terminology. Additionally, the kind of figure used

throughout the thesis to analyze neural networks is introduced here.

2.1.1 Mathematical definition of dynamical systems

A dynamic system is the mathematical description of a time varying processes. It is

described by a transformation f : S → S which acts on a state s(t) ∈ S, where S is the

state space and t ∈ T is the time, with either t ∈ R or t ∈ Z (see below). It is assumed,

that the state variables in the state vector s(t) = [s1(t), s2(t), ..., sN(t)]T , with N being

the order of the system, contain sufficient information to describe the whole systems state

5



2.1. Dynamical systems theory

Figure 2.1: Phase diagram of a stiff pendulum with friction. On the hori-
zontal axis is the angle ϕ, on the vertical axis the velocity ϕ̇. Point A is an
attractor corresponding to the resting pendulum at the bottom, points B1 and
B2 represent the very same repellor corresponding to the pendulum in fully
upright position (figure from [Abraham and Shaw, 1992] with changes).

at any particular point in time. Formally a dynamical system is the triple (T,S, f). For

a time-continuous system the differential equation

ṡ(t) = f(s(t)), f : S → S (2.1)

describes the evolution from one state to the next. This evolution rule for time-continuous

systems with t ∈ R changes to the update rule

s(t+ 1) = f(s(t)), f : S → S (2.2)

for time discrete systems with t ∈ Z. Since computation in digital hardware is always

discrete, the rest of this work only deals with the time discrete case. The set of all

possible states is called state space S or phase space with S ⊆ Rn being a manifold.

The description of the system is completed by adding an initial condition s(t0) with t0 as

starting time. For every possible initial condition, represented as a point in state space,
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2.1. Dynamical systems theory

exists a trajectory defined by this starting point and the update rule f . The set of all

possible trajectories is called the flow and illustrates the overall behavior of the system.

Of particular interest is the long-term behavior of the system. After enough updates,

the state of many dynamical systems ends up in a small subset ob the state space called

a limit set. When the systems state is in a limit set, it will stay there indefinitely. If all

nearby trajectories converge to the limit set, it is called stable limit set or attractor. For

unstable limit sets (also called repellors), the system will move away from the limit set if

perturbated. For this work attractors are of particular interest.

Figure 2.1 shows a phase diagram of a stiff pendulum with angle ϕ on the horizontal

and velocity ϕ̇ on the vertical axis. The blue lines represent some example trajectories. As

can be seen, points B1 and B2 are the same repellor (π and −π are the same point), since

the trajectories lead away from them, point A is an attractor, since all nearby trajectories

lead to it. The blue lines going from left to right or from right to left at the top and the

bottom respectively are trajectories for the overturning pendulum.

2.1.2 Description of attractors and some of their properties

[Haykin et al., 2009] provides the following definition of an attractor:

A subset (manifold) M⊂ S of the state space is called attractor if

• there is an open neighborhood around M that shrinks down to M under the flow

(basin of attraction);

• no part of M is transient;

• M cannot be decomposed into two non-overlapping pieces;

• M is invariant under the flow;

With this definition in mind, different attractors can be described. The attractor A in

Figure 2.1 is a stable fixpoint. As the name suggests the limit set consists of only one

point in which the system ends up for t → ∞. Other kinds of attractors are periodic

orbits, quasiperiodic orbits and chaotic attractors (with chaotic attractors mentioned here

for the sake of completeness, but not further elaborated). When the system ends up in an

orbit, the limit set consists of a subset M⊂ S where the points are visited in a periodic

manner. The attractor is called a p-Orbit with period p, when the system visits p points

Op(s0) = {s0, s1, s2, . . . , sp−1} (2.3)
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2.2. Recurrent neural networks

with sp = s0,∀t < p : st 6= sp. The attractor is called quasiperiodic if the points are not

repeated exactly but the phase portrait clearly shows a periodic behavior.

As the first point in the definition states, for small perturbations the system will always

return to the attractor. The points from which the system converges to an attractor over

time are called its basin of attraction. In the so called phase portrait or phase diagram all

the limit sets and basins of attraction are displayed to fully explain the different dynamical

behaviors of the system and which behavior can be found where in its state space.

For a stable environment, the last point of the definition holds. The attractor land-

scape is invariant under the flow and determines the behavior of the system. When the

environment changes, for example changing sensory values provided to a neural network,

the attractor landscape can change in different ways. Attractors can move in the state

space, resulting in slightly different behaviors. This slight changes of attractors can be de-

sirable. When the attractor landscape changes drastically, with new attractors appearing

or others disappearing its called a bifurcation. These bifurcations can also be desirable

to change between different behaviors. The systematical study of bifurcations by varying

one or more values (e.g. weights or inputs) can be graphically evaluated to explain the

behavior of a given system. Some examples will be shown in section 4.1.

2.2 Recurrent neural networks

Artificial neural networks are based on a simplified model of biological neurons as pro-

cessing units [Haykin et al., 2009]. The neuron has inputs x(t) ∈ Rn from sensors, other

neurons and possibly from itself. The fire probability of the neuron is modeled by weight-

ing these inputs with the weight vector w ∈ Rn and propagating the summed results

through a transfer function σ : R→ R.

2.2.1 The single neuron

Figure 2.2 shows an artificial neuron with n inputs. The weight vector w and the input

signal x(t) are defined by

w = (w1, w2, . . . , wn)T (2.4)

x(t) = (x1(t), x2(t), . . . , xn(t))T . (2.5)
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2.2. Recurrent neural networks
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Figure 2.2: Single neuron with input x(t) ∈
Rn, activation function σ and output y(t+ 1).

The activation a of the neuron is then the weighted sum of the input signals:

a =
n∑

i=1

wixi = wTx. (2.6)

This is the inner product of the weight vector w and the input signal x(t) and therefore

represents the similarity of w and x(t). The output y(t+ 1) is then calculated by

y(t+ 1) = σ(a+ b) = σ(wTx + b) (2.7)

where b ∈ R is called the bias and can be understood as an offset for the activation of

the neuron. The bias term can also be included in the weight vector by adding one more

weight and concatenating the vector x(t) with a constant 1.

n∑
i=1

wixi(t) + b =
n∑

i=0

wixi(t), with w0 = b and x0(t) = 1 (2.8)

The transfer function σ, also called activation function, can be of linear type, truncating

(e.g. rectified linear unit) or of a sigmoidal type. For this work the hyperbolic tangent

tanh(x) =
e2x − 1

e2x + 1
(2.9)

is used, since it combines some useful properties. If the activity of the neuron is in a

small range around zero (approx. ±1) the tanh behaves almost linearly. When the input

signals or the weights are very big, the tanh is in saturation and the neuron behaves like

the signum function:

9



2.2. Recurrent neural networks

sgn(x) :=


+1 if x > 0

0 if x = 0

−1 if x < 0

(2.10)

In case the neuron has a self connection ws it is called recurrent. Equation 2.7 would then

become

y(t+ 1) = σ(wTx + wsy(t) + b). (2.11)

Of course, the self connection ws can be integrated in the weight vector w and the output

y(t) of the last time step can be included in x(t) similarly as in equation 2.8.

2.2.2 Networks of neurons

Extending from only one neuron to a fully (or only partly) connected network of m

neurons the system becomes a parametrized discrete-time dynamical system with the

neuron’s output state space S ⊂ Rm, the parameter space W ⊂ Rm×n and the update

rule f given by

x(t+ 1) = f(x̂(t)) = σ(Wx̂(t)). (2.12)

Here the vector x̂(t) ∈ Rn is the concatenation of sensory inputs, the neuron’s outputs

of the last time step and a constant term representing the bias term. The weight matrix

W ∈ Rm×n with wij denoting the weight from neuron j to neuron i is given by

W =


w1,1 w1,2 · · · w1,n−1 1

w2,1 w2,2 · · · w2,n−1 1
...

...
. . .

...
...

wm,1 wm,2 · · · wm,n−1 1

 . (2.13)

The weight matrix is often sparse (most entries are zero) since not all neurons are con-

nected to each other and not all neurons necessarily get all the sensory inputs. Therefore

it can be computationally more efficient to calculate the network updates not as a matrix

multiplication but to process the neurons individually. How this can be done is shown in

chapter 3. Additionally a subset of all neurons is declared as output units. It is only this

subset which is read out and serves, for example, as a controller for a robot. The sensory

10



2.2. Recurrent neural networks
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Figure 2.3: One neuron acting as a switch.
Depending on the input, the output is either
+1 or −1.

inputs are often referred to as input neurons. All other neurons are called hidden units.

When analyzing recurrent neural networks it can often be observed, that a small subpart

of the network exhibits a specific behavior. The next section gives a short overview of

possible dynamics of such subparts.

2.2.3 Dynamics/Modules of small neural networks

One important behavior of a neuron is that of a neural switch. Depending on the input,

the neuron switches between two states with their corresponding outputs. This is realized

for example with two complementary inputs and a strong self connection as shown in

figure 2.3. As long as both inputs x1 and x2 have the same value, the activation of

this neuron stays zero. As soon as one of the inputs has a higher value than the other,

the neuron’s activation transitions to +1 or −1 (or near these values) in a few update

steps. This can be observed by plotting the temporal evolution of the neuron’s output

for different starting values of y(t0). For the example neuron this is shown in figure 2.4.

Here the inputs are slightly out of balance with x1 = 0.1 and x2 = 0. The different lines

show the temporal evolution of the neuron’s output starting at different values of y(t0).

These range from −1 to +1 in steps of 0.05. Here, the time steps are denoted as ti on

the x-axis and the output value of the neuron on the y-axis. This kind of figure is used

in later chapters with the same meaning. Additionally at some points the values at these

positive and negative attractors are described as +1 and −1 for simplicity when they are

really only in the vicinity of these extreme values (for example between 0.8 and 0.99 for

+1).

Another interesting behavior one single neuron can show is that of an oscillator. When

the neuron has one input and again a strong self connection with an opposed sign to the

input, it starts to oscillate between positive and negative activation. This is very obvious
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2.2. Recurrent neural networks

Figure 2.4: The temporal evolution of the aforementioned
neural switch. The output transitions to +1 or −1 in only a
few steps when the activation y is out of balance.

by looking at the equations and some example calculations. Let the equation for the

output of the neuron be

y(t+ 1) = tanh
(
2x(t)− 2y(t)

)
. (2.14)

Assuming again an input of x = 0.1 the output of the neuron for the first few time

steps is calculated as:

y(0) = tanh(2 · 0.1− 2 · 0) = tanh(0.2) ≈ 0.20

y(1) ≈ −0.19

y(2) ≈ 0.53

y(3) ≈ −0.69

y(4) ≈ 0.92

The switching between positive and negative outputs and the increase of the amplitude

are typical for this kind of simple oscillator. Depending on the weights and the input

value, it stabilizes on a certain amplitude as shown in figure 2.5. This is an example of a

2-orbit system. As a last example, a network formed by 2 fully connected neurons is shown

in figure 2.6. If the weights of this network meet certain conditions, this combination is

called a neural SO(2)-Oscillator ([Pasemann et al., 2003]). The weight matrix of such a

12



2.2. Recurrent neural networks

Figure 2.5: One neuron acting as an oscillator. Depending
on the input, the output switches between +1 or −1.

network is given by

W =

(
w1,1 w1,2

w2,1 w2,2

)
= α ·

(
cos(φ) sin(φ)

−sin(φ) cos(φ)

)
(2.15)

with α > 1. Such a matrix is easily recognized as rotation matrix in the 2D-plane. Since

for the stable oscillation a quasi-periodic orbit needs to be established, the factor α is

introduced to compensate the slope of the tanh function. The example shown in the

figure has the weight matrix

W =

(
1.1 0.15

−0.15 1.1

)
. (2.16)

𝑥𝑥0(𝑡𝑡)

⋮

𝑥𝑥𝑛𝑛−1(𝑡𝑡)

y(t+1)

𝑤𝑤0

⋮

𝑤𝑤𝑛𝑛−1

𝜎𝜎

𝑛𝑛1

𝑛𝑛2

𝑛𝑛3

𝑤𝑤11

𝑤𝑤12 𝑤𝑤21

𝑤𝑤22

𝑛𝑛1

𝑛𝑛2

Figure 2.6: Two neurons as given in the leftmost figure form a SO(2) oscillator. In the middle the
phase diagram of the two neurons is shown (output of neuron 1 on the x-axis and output of neuron 2
on the y-axis). The figure on the right shows the output of the first neuron plotted over time.
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2.3. Artificial Evolution

2.3 Artificial Evolution

Adopting some ideas from nature, artificial evolution is a population based optimization

algorithm [Nolfi et al., 2000]. It is often used, when classic optimization strategies like

gradient methods fail to perform well. Artificial evolution can provide a solution to a

problem which in some cases is not optimal, but good enough for the task at hand.

The optimization problem needs to be formulated such that a solution can be given in a

set of N numerical parameters, often formulated as a vector v = (v1, v2, . . . , vN). This

vector of numbers is called the genotype of an individual. A set of K individuals form a

population P . The individuals in the population are randomly initialized with vi := [−4; 4]

being a good choice for neural network weights. All individuals in the population form a

generation which is subjected to the following steps.

Each individual is evaluated using a carefully chosen fitness function. This function has

to include all the important aspects of the given task but should be formulated as simply

as possible. Additionally it has to be monotonically increasing, so that a better behavior

results in a better fitness. This function is then used to rate the individuals according to

their capability to solve the given problem.

Then, biologically inspired operations like selection, recombination and mutation serve

as operators and are applied to the individuals in one generation. Each operator is applied

with a certain probability. These probabilities are the adjustable hyperparameters for the

algorithm. In the selection phase, the best individuals are selected to form the basis of a

new generation. If the number of selected individuals is smaller than the population size,

the rest of the individuals are created via copying or recombining. It is also possible to

create totally random new individuals.

Recombination, also called crossover, corresponds to sexual reproduction in natural

evolution. Randomly chosen parts of two or more individuals are combined together to

form a new genotype. Thus, partial solutions from different individuals can be combined.

When the population is complete, all individuals are mutated to generate previously

unseen genotypes. This can be structural mutation like deleting or adding neurons or

weights but also changes to the numerical values of the network weights. It is the experi-

menter’s job to control mutation probabilities so that there is enough variability for new

solutions to emerge but not too much to destroy already found solutions.
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2.4. The given images and the approach for the task
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Figure 2.7: An image from the pixelpipeline has 25 times 20
pixels. This image shows the zoomed in image of a circle drawn
on the whiteboard.

2.4 The given images and the approach for the task

As described in the introduction, the RNN agents evolved in this work have the task to

discriminate between different symbols. In an active vision process, they should determine

which symbol is depicted in an image.

2.4.1 How the given images look like

The setting consists of images of a whiteboard with symbols drawn on it. The images are

obtained through the visual perception system of a humanoid robot which imposes the

following boundary conditions. The images come in the YUV color format with Y being

the luminance and U and V the chrominance. Taking human perception into account,

the YUV format has a reduced resolution for the chrominance. Two pixels have different

Y values but share U and V. The raw image from the camera consists of 360 times

288 pixels. The image processing system of the robot, called pixelpipeline, gets the raw

image, performs an user defined affine transformation and provides the result in a reduced

resolution of 25 times 20 pixels. The possible transformations include zooming, rotation
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2.4. The given images and the approach for the task

and stretching or compressing. Depending on the transformation a certain number of

pixels from the raw image are averaged to give a superpixel in the transformed image.

These superpixel then form the final image of 25 times 20. In figure 2.7 one reproduced

example is shown. Although all color information is available, the RNN agents only use

the luminance channel. Since the symbols are black on a white background, the luminance

of pixels in the symbol is much lower than the luminance of the background. This makes

the separation quite easy. The pixel values of the darker pixels have an average value

of 0.18, the bright pixels have an average value of 0.49. These values are used for the

binarized versions of the images (see chapter 4).

The real world data collected for this work consists of 96 images of three symbols and

32 images of plain background. Every symbol, namely a square, a circle and an arrow,

was drawn 16 times and for every drawing 2 images were taken. These 2 images are

taken with a slightly different setting of the pixelpipeline, so that they are not identical.

When the zoom factor or the position of the camera relative to the whiteboard is changed

slightly, the resulting superpixel are quite different.

2.4.2 Two strategies for the structure of the agents

The RNN agents do not get the whole image as input. Only a small window of 5 times 5

pixels, called the retina, is available to the neural network (see figure 2.8). The rows of the

retina are concatenated to form the input for the network. This input is then processed

and as output the neural network controls how the retina moves along the horizontal and

the vertical axis. The first two neurons handle these controls (indexed 0 and 1). The next

neurons encode the symbol categories. Two strategies are possible to solve this task.

The first strategy uses one neural network in which one neuron is reserved for each

of the symbols. Therefore the neural network would need at least three more neurons.

The neuron with the highest activity would indicate the existence of the corresponding

symbol. In this work, neuron 2 (as mentioned above, neurons 0 and 1 control movements)

encodes a square, neuron 3 a circle and neuron 4 an arrow. The absence of a symbol is

encoded as low activity in all three neurons.

In the other strategy, one network only looks for one symbol. In other words, for every

symbol one network will be evolved. These networks only need three neurons, two for

movement and one which is active if the corresponding symbol is present and inactive
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2.4. The given images and the approach for the task
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Figure 2.8: The retina consists of a 5 times 5 pixel
window. The rows of this window are concatenated
to give a size 25 vector, which serves as input to the
neural network.

otherwise. Although this strategy requires one additional network for every new symbol,

these ”specialized” networks can be smaller. Additionally adding new symbols does not

require a completely new evolved network, but only a new one for the new symbol. This

makes the second strategy a possible candidate for open-ended learning.

Since the task of discriminating these real world images is quite difficult, the first stages

of evolution are performed using simpler artificial images. With increasing complexity of

the task the RNN agents can be evolved such that they finally are able to handle the real

world images. This increase of complexity is described in detail in section 3.2.
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3 Implementation of artificial

evolution and neural networks

The main goal of this work is the development of recurrent neural networks (RNN) which

can be used by a robot to recognize a set of symbols drawn on a whiteboard. This goal

is achieved by using the principle of active perception. The RNN actively determines its

next step while analyzing a given image. Its dynamic state then ends up in an attractor

which unambiguously indicates which kind of symbol is shown in the image. Since the

recognition of symbols in such a way is a very hard task, the RNN is gradually evolved.

Starting with simple problems, the tasks presented to the networks get increasingly more

complex. This chapter starts by describing in detail the implementation of the developed

algorithms, which were used to evolve RNNs. The first part of this chapter is deliberately

more focused on the technical details to allow others to reimplement these ideas. The

second part describes the path of evolution to find RNNs solving complex tasks starting

with the simplest task up to the final goal (the original image) and shows the design

decisions made on this track.

3.1 The technical details of the implementation

This sections deals with the implementation of recurrent neural networks and artificial

evolution. It gives an overview of all needed structures and the chosen parameters. Figure

3.1 shows the most important steps of the implementation presented in a flow diagram.

The left part (1) of the figure shows the procedure processGeneration. In this procedure

all the steps of the artificial evolution, as described in the previous chapter, are executed.

The procedure is as follows: The outer loop loops over all the training images. One loop

consists of the loading of one image, the evaluation of all individuals (inner loop), then

the mutation and the selection. The inner loop evaluates all individuals of the generation
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3.1. The technical details of the implementation
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• initGenome

• updRnn
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updateRnnStep
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Figure 3.1: The procedure processGeneration with the most important steps is shown as flow diagram.
On the right hand side, the encoding of the genes and the History buffer is shown.

on the given image. Each individuals fitness is saved in the History buffer. This buffer

is used to display individual networks, their weights, retina movement et cetera. It is

also used to calculate the fitness over all images and to rank the individuals according

to their fitness values. In the right part of figure 3.1 the encoding of the History buffer

and the buffer Genes for all the genotypes is shown. The following sections describe the

implementation of the neural networks and the shown procedures in more detail.

3.1.1 The representation of neural networks in memory

As mentioned in section 2.2 the weight matrix W of a recurrent neural network is often

sparse. So, computing the update by matrix multiplication would involve a lot of unnec-

essary computation. To compute the update more efficiently and to allow for dynamically

changing network structures, the RNN (not shown in figure 3.1) is represented as two
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3.1. The technical details of the implementation

Weight Index 1 Index 2

3950 23 4

16 bit 8 bit 8 bit

3950𝑛𝑛23 𝑛𝑛4

Figure 3.2: The genotype is encoded as a list of triples consisting of the weight and
two indices (see text). The weight is represented as a 4Q12 fixed-point number, the
indices are two 8 bit numbers, so that the whole list element is a 32 bit number.

arrays, encoded in 4Q12 fixed-point arithmetic. This means, that the top 4 bit encode

the digits before the decimal point and 12 bit encode the fractional part.

The first array RNN represents the state vector x(t) for the neurons. All neurons are

listed there and accessed by an index. This includes the bias term and all inputs. The

first index is the bias term, namely the number 4096 as this is 1 in 4Q12 arithmetic. The

next 25 cells are the input from the retina. Indices 26 and 27 contain the horizontal and

the vertical position of the retina respectively. Starting at index 28 until the maximum

index of 255 the neuron activities are stored. The second array Genome is a copy of the

genotype (from Genes) of the currently active network. Its structure can be seen in part

2 of figure 3.1. The first entry encodes the age and the number of weights of the network.

Then there are listed the weights, in the figure denoted as ”Weight 1”, ”Weight 2” and

so on. These entries consist of a weight and two indices. The first index is the neuron

(or the input) the weight comes from as described above and the second is the neuron

the weight goes to (see figure 3.2). As weights can only go to neurons and not to inputs,

the second index includes an offset. This offset is the index 28, where the first neuron is

encoded in RNN. So if the index 2 is 0 the weight really goes to the neuron stored at index

28.

Weights and indices are encoded together in a 32 bit hexadecimal number. The top 16

bit encode the weight in the above mentioned 4Q12 fixed-point notation with 212 = 4096

representing the 1. The weights are therefore in the range (−16384, 16383) which is

(−8.0, 8.0) in floating point representation. The indices range from 0 to 255 allowing for a
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3.1. The technical details of the implementation

maximum number of 228 neurons (since the neuron activations in the array RNN start only

at index 28, there is only room for 256 − 28 = 228 neurons). The example in the figure

represents a weight going from 23 to neuron 4 with the weight being 3950
∧
= 0.96436 The

index 23 is of course an input from the retina image. A self connection of neuron 4 would

be indices 32 to 4. Neurons 0 and 1 are used to control the movements of the retina. The

outputs are scaled by 4 and determine the change of the x and the y position respectively.

Neurons 2 to 4 are used to indicate symbol categories. Neuron 2 stands for a square,

neuron 3 for a circle and neuron 4 for an arrow. The recognized symbol is encoded with

high activity (near one) of the corresponding neuron and low activity (near negative one)

of the others. For easier processing the first entry in the array Genome contains the length

of the genome in the lower 8 bit and the age in the higher 16 bit. The age is a simple

counter which counts the numbers of generations an individual already exists.

3.1.2 Algorithmic details of the artificial evolution

All genotypes of a population are stored in the array Genes and the currently processed

genotype is copied to Genome. Then the procedure updateRnnStep (see algorithm 1) is

called. It iterates through the array Genome, extracts the weight and the two indices and

multiplies the weight by the activation of the neuron at index 1 (see lines 4 to 7). The

result is added to the neuron at index 2 (at this point in a Cache). When all weights

are processed, the activation function is applied to the neuron activations in the Cache.

Then, to conclude one update of the RNN, the results in the Cache are copied back to

RNN.

As can be seen in Algorithm 1, the Cache is first filled with NaN (Not a Number).

Then, in line 8 to 12, the NaN is overwritten by the result at the first appearance of a

specific index. Using this method, it can be easily determined which neurons are active

and which were deleted by the evolutionary algorithm. One has only to look for NaN in

the RNN to find the deleted neurons, since these NaN are not overwritten by any result.

These free slots can than be filled by new neurons.

To evaluate an individual, the procedure updateRnnStep has to be called repeatedly.

The procedure evaluateIndividual in algorithm 2 shows the whole process: First the

neurons in RNN and the current fitness value have to be set to zero. After that, the

current genotype is loaded. Then, for the predefined number of update steps NrUpdates,
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3.1. The technical details of the implementation

Algorithm 1 One update step of the recurrent neural network

1: procedure updateRnnStep
2: Cache ← NaN . fill Cache with NaN
3: for i← 0, len(Genome) do
4: weight← Genome[i]31:16 . top 16 bit
5: index1← Genome[i]15:8
6: index2← Genome[i]7:0
7: result← weight× RNN[index1] . interim result
8: if Cache[index2] = NaN then
9: Cache[index2]← result

10: else
11: Cache[index2]←Cache[index2]+result
12: end if
13: end for
14: for i← 0, len(Cache) do
15: Cache[i] ← tanh(Cache[i])
16: end for
17: RNN ← Cache . copy neuron activities from Cache to RNN

18: end procedure

the following steps are computed. getXYPosition reads the activity of neurons 0 and 1

and computes the new x and y position of the retina. Next, getRetinaImage, as the name

suggest, uses these new positions to load the corresponding pixel from the full image and

writes them into the retina cells (1 to 25) in RNN. Then the above described procedure

updateRnnStep is called.

When the new state of the neural net is calculated, its fitness can be determined.

The procedure calcFitness described in detail in the next section evaluates the current

genotype. After the loop is finished and all update steps are done, the summed fitness

value is normalized with NrUpdates to make sure the fitness value is in the range 0 to

1 (provided calcFitness returns a value in that range). The values can be of arbitrary

range, but normalizing is applied for the convenience of analysis. The final fitness value

of the given individual is returned. This value is used by the artificial evolution to rank

the individuals.

In algorithm 3, showing the procedure processGeneration, every individual in the

population is evaluated with every test image. The fitness values are normalized (line 7)

with the number of images NrImages. Then the best individuals are selected, recom-
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3.1. The technical details of the implementation

Algorithm 2 Evaluation of one individual

1: procedure evaluateIndividual(i) . Index i of current genotype
2: RNN[28:255] ← 0 . fill RNN with zeros
3: fitness← 0
4: Genome ←Genes[i]
5: for i← 0, NrUpdates do
6: getXYPositions . get position of retina from neuron activity
7: getRetinaImage . retrieve part of image as input to neural net
8: updateRnnStep
9: fitness← fitness+calcFitness . according to fitness function

10: end for
11: fitness← fitness/NrUpdates
12: return fitness
13: end procedure

Algorithm 3 Evolving one Generation

1: procedure processGeneration
2: Fitness ← 0 . fill Fitness with zeros
3: for i← 0, NrImages do
4: loadImage . Load new test image
5: for i← 0, PopulationSize do
6: fitness← evaluateIndividual(i)
7: Fitness[i] ← Fitness[i]+fitness/NrImages
8: end for
9: end for

10: Select . according to selection policy
11: Mutate . according to mutation policy
12: end procedure
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11

13

13

Figure 3.3: Two genotypes are recombined. They are split at a random position
indicated by the dashed line. The length of the genome, stored in the first cell, is
copied from the individual which provides the part to the right.

bined (Select) and mutated (Mutate) as described below. The selection and mutation

can alternatively be done in an extra step. This can be convenient for analysis of the

current generation. After all individuals have been evaluated, results can be displayed

and analyzed before ”destroying” the population with selection and mutation.

Selection

The selection in the evolutionary algorithm can be handled in different ways (see for

example [Nolfi et al., 2000]). For this work a rank based selection of the best 40% was

used. These individuals are each copied twice into the new generation. The remaining

20% is filled up with randomly generated individuals which have the same number of

neurons and similar number of weights like the best individual of the last generation. After

the new generation is filled up with new individuals, the crossover is applied. A small

fraction of individuals is chosen, they are divided at some random point and recombined

with a fraction of another individual as shown in figure 3.3. During this recombination of

individuals, the average of their age is propagated to the new individual.

Mutation

The mutation is perhaps the most integral component of the evolutionary algorithm,

since it introduces the changes in the genotype which eventually lead to improvements.

It includes 5 actions each with a certain probability of occurrence. These probabilities

are listed in table 3.1. The first 4 probabilities handle how probable it is to delete/insert

one neuron/weight. The mutation in one generation allows only one change of numbers

in neurons and weights. Mutation of weights on the other hand can include all weights.
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3.2. Increasingly complex tasks for gradual evolution

Action Parameter Start Value
Delete neuron µ delNrn 0.1
Delete weight µ delWgt 0.2
Insert neuron µ insNrn 0.05
Insert weight µ insWgt 0.1

Mutate genome µ Gen 0.3
Mutate weight µ Wgt 0.3

Variance of mutation MutV ar 0.2

Table 3.1: The probabilities for mutation of a genotype. These param-
eters are manipulated to guide the evolution. Also given are some values
to start with.

The probability µ Gen determines if a certain genotype is mutated. If it is, µ Wgt is the

percentage of weights being mutated. The mutation of one weight consists of adding a

normally distributed number with mean 0 and variance MutV ar. In later stages of the

evolution MutV ar can be reduced to 0.01 which then is called parameter optimization.

3.2 Increasingly complex tasks for gradual evolution

As mentioned in section 2.4 the RNN agents are evolved using increasingly complex tasks.

The first task includes two artificially created symbols, namely a square and an abstract

circle, which basically has the same symbol as the square but with cutoff corners (see

figure 3.4). The retina starts in the top left corner of the image. This task is solved very

x
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(nxn) 𝑛𝑛 ∈ ℕ
𝑥𝑥, 𝑦𝑦 ∈ (−1, … , 1)

Figure 3.4: Artificially produces images to evolve the first population. A square on the
left and a simple circle on the right.
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3.2. Increasingly complex tasks for gradual evolution

quickly as described in section 4.1. The solution found depends heavily on the constant

environment. The next task consists of the same symbols but moved one pixel to the side.

As soon as solutions for this slightly more challenging tasks are found, the complexity is

increased further by adding 4 images with the symbols now moved once to the right, once

down and once both. This gives in total 8 different configurations. This task is referred

to as ”8 symbols task” even though, there are only 2 symbols in 4 different locations. An

analysis of the best network which categorizes these 8 images correctly is given in section

4.1.2.

Now the stage is set to move from artificial examples to more complex images. For

this purpose, the mean luminance value of the real world images is calculated and used

as a binary threshold to binarize the images as shown in figure 3.5. The binary values

used are the average values of the dark and the bright pixels respectively, as they were

found in the original images (dark pixels have 0.18, bright pixels have 0.49). These values

were also used for the artificial images. Therefore the neural networks evolved with the

artificial images already work with nearly the same range of luminance values that they

later ”see” in the real world images.
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Figure 3.5: A real world image of a drawn square is binarized by taking the mean
luminance value as threshold (left). The original image is shown on the right.

The last stage of complexity before getting to the real images is the addition of noise

to the luminance values of the image. For this purpose, the variance of the luminance

values in the real world images is analyzed and used to scale the noise. Then a normally

distributed number with mean 0 and the variance from the real world data is added to the

pixels (in the experiments a variance of 0.12 was used). This rather easy method increases
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3.2. Increasingly complex tasks for gradual evolution

robustness of the found solutions, since networks which depend on fixed luminance values

of certain pixels for their behavior will then be sorted out quickly.

3.2.1 Fitness function

The above mentioned calcFitness function returns a value between 0 and 1. This value

is calculates in two different ways for strategy one and strategy two as follows. For strategy

one it is important, that only the neuron indicating the symbol shown in the image has

a high activity. The other neurons should have low (negative) activity. Therefore, the

fitness function incorporates all of these requirements. For strategy one two cases have

to be distinguished. The first case is the presence of a symbol. Here the corresponding

neuron needs a high activation and all others a low activation. If there is no symbol, then

all 3 neurons should have a low activation. This leads to the following fitness function for

a given network depending on the symbol in the image.

fitnessnetwork(symbol) =
∑
t

1

6
(3 +Ot(symbol)) (3.1)

with

Ot(symbol) :=



o2,t − o3,t − o4,t if symbol = square

o3,t − o2,t − o4,t if symbol = circle

o4,t − o2,t − o3,t if symbol = arrow

−o2,t − o3,t − o4,t if symbol = None

. (3.2)

Here t denotes the time step and o2,t is the output of neuron 2 at time step t. For strategy

two, the fitness is even simpler. Here the fitness function depends on the purpose of the

network. As an example, the fitness function of the square network would be

fitnessnetwork(symbol) =
∑
t

(Ot(symbol)) (3.3)

with

Ot(symbol) :=

o2,t if symbol = square

−o2,t if symbol = not square
. (3.4)
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3.2. Increasingly complex tasks for gradual evolution

3.2.2 How the accuracy of the networks is measured

The evolution on the real world images, binarized and original is done on less then half of

the available images. The networks only see 60 images (15 for every symbol and 15 empty

ones). The rest (68 images) is left for testing and evaluation. These 68 images will be

used to measure the accuracy of the networks. For this purpose, they see these images as

input and then are evaluated for 20 time steps. The outputs of the corresponding neurons

are analyzed and the final ”voting” is determined. Here only unambiguous outputs are

counted as right. This means, that the networks output is only correct, if the neurons

activation is high which indicates the presence of the given symbol and the others are

low (for strategy one). Then the correct votes are counted and divided by the number of

trials, which gives the final accuracy.
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4 Experiments and analysis of

evolved agents

In this chapter the experiments are described and the results are analyzed. The track

of increasingly complex tasks described in section 3.2 is carried out and the RNN agents

solving the tasks are presented and discussed.

Part one consists of the strategy to evolve one RNN agent to recognize all symbols. It

starts with the very simple task of two artificial images showing two symbols. The RNN

agent which solves this task best is analyzed. Then the agent solving the 8 symbols task

is analyzed and the differences are highlighted. Gradually getting more complex, the best

agent for the real world image is compared to the one for the binarized version.

Part two presents 4 agents each evolved to indicate the presence of either one of the

four cases. The main similarities and differences are highlighted and it is discussed, where

the found solutions could be improved.

4.1 Strategy one: One network for all symbols

The first strategy is to evolve an RNN agent which can detect one of three symbols or the

absence of symbols in a given image. As described in section 2.4 this is achieved by using

five neurons as output neurons whose activity determine the movement of the retina and

encode the presence of the symbols. As a first stage of evolution, RNN agents are being

evolved, that can distinguish between two artificial symbols. These agents already have

neurons 0 and 1 as output neurons determining the movements. The outputs can vary

between -1 and +1. They are then scaled by a factor of 4. So the retina can move at

most 4 cells in one time step. Neurons 2 and 3 are reserved for encoding the square and

the circle respectively. The neuron encoding the arrow is not yet considered, but will be

added in the binarized task.
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4.1. Strategy one: One network for all symbols
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Figure 4.1: The recurrent neural network which solves the task of categorizing two
artificial symbols. Neuron 1 moves the retina horizontally and neuron 1 moves it
vertically. Neuron 2 encodes the square and neuron 3 encodes the circle.

4.1.1 Two artificial symbols

The two symbols shown in figure 4.1 on the left represent a square at the top and a circle

at the bottom. On the right hand side in the same figure, one agent which solves this task

is shown. It is a fairly simple network with 4 neurons and 7 weights. As the movement

of the retina shows, the agent relies heavily on the static environment. Neurons 0 and 1

receive a small constant input which resolves in a constant movement from the left top

corner to the bottom right corner. It uses input fields 21 and 9 for positive activation,

which is only varying slightly, depending on the input values. Neuron 2 has only one

input, a self connection and a bias and acts as a switch. Its equation looks as follows:

y(t+ 1) = tanh
(
4.2y(t)− 7.18x(t) + 3.51

)
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4.1. Strategy one: One network for all symbols

where y(t) is the neuron’s current output value and x(t) is the current input. One can see,

that in the circle task, input field 3 always gets the same value of the background color

(which is 0.49, the darker pixels are 0.18). This input is almost exactly compensated by

the bias term with a small perturbation to negative values:

y(1) = tanh
(
4.2 · 0− 7.18 · 0.49 + 3.51

)
y(1) ≈ −0.0082

y(2) ≈ −0.043

y(3) ≈ −0.185

y(4) ≈ −0.656

This negative tendency results in a strong negative activity after a few iterations. Through

the connection from neuron 2 to neuron 3, neuron 3 then gets a strong positive activation.

This results in the final decision for circle. If, on the other hand, input field 3 hits a darker

pixel at update step 2, the activation changes to positive values, which then results in the

opposite decision:

y(2) = tanh
(
4.2 · (−0.0082)− 7.18 · 0.18 + 3.51

)
y(2) ≈ 0.967

In this first task, the evolutionary algorithm found a simple solution to the given task,

without the need for actively exploring the symbols.

4.1.2 Eight artificial symbols

To enforce a more stable solution, the artificial symbols are now moved one pixel to the

side or to the bottom or both, resulting in 8 different configurations. Now the agents

can no longer rely on a static environment and another solution has to be found. One

successful agent is shown in figure 4.2 and its behavior for two configurations in figure 4.3

and 4.4.

The only difference in this first configuration is the pixel at input field 3 in the third

iteration. As before, neuron 2 acts as a switch and its activation becomes +1 for the square

and −1 for the circle as can be seen in the plots of the neuron outputs. As the right plot
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Figure 4.2: One agent solving the eight symbols task successfully.

shows, the output of neuron 2 gets more negative with every iteration until it ends up

at −1 which then influences the activation of neuron 3 to become positive. When on the

contrary input field 3 shows a dark pixel, neuron 2 switches immediately to a positive

activation where it remains. Neuron 2 also influences the movement in the y-direction.

In the square environment, neuron 2 forces neuron 1 to stay positive. Otherwise neuron

1 slowly changes from +1 to −1 resulting in the turning behavior.

By far the most interesting behavior in this setting is shown in figure 4.4. Here input

field 3 at update step 3 does not help to differentiate between the two symbols, so that

another solution evolved. The occurrence of the darker pixel still results in the strict

positive output of neuron 1 and therefore in the movement downwards. Here the behavior

shows a movement to the right bottom corner and then to the left bottom corner, so that

the network can explore if the symbol has missing edge pixels. It is then update step 9

where input field 3 again sees either a darker pixel or not indicating the square or the circle

respectively. In the output plots one can see, that at this point the decision is already

made and the second turn on the left corner would not be necessary. Interestingly in the

circle case, the output of neuron 1 gets positive in the last update steps which again would

result in the movement upwards on the right side of the image as in the case before.
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Figure 4.3: The first one of two different behaviors in the eight symbols task. On
the top the artificial images along with the movement of the retina is shown. On
the bottom the outputs of the 5 neurons are shown.
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Figure 4.5: The RNN agent solving the binarized real image task. It consists of
only 6 neurons and 25 weights.

The evolution of these RNN agents which solve the eight symbols task has shown, that

very small and compact solutions are possible. These solutions would be very hard or even

impossible to engineer. After these experiments many different solutions were found from

which 30 were picked. These served as basis for the next task. Of course the real images

are very different from the artificial ones, therefore the solutions presented in the next

sections have very little in common with the ones presented above. Additionally there is

now one more symbol, which should be encoded by neuron 4. Nevertheless, starting with

a simpler tasks like shown in this section sped up the evolutionary process. It took 800

to 1000 generations on each task to find the final solutions presented in the next sections.

Experiments without simpler task, starting the evolution directly with the original images

have shown, that 60 percent of the experimental runs yielded no solution at all. In 40

percent it took 6000 to 10000 generations to achieve comparable results.
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4.1. Strategy one: One network for all symbols

4.1.3 Binarized images of real symbols

From the solutions which were found from the previous task, the 30 solutions which

solved the task with the highest accuracy yet by using the fewest neurons and weights

were picked. These formed the first generation for the next task, described in this section.

The real images were binarized as described in section 3.2.

One agent solving this task for the square and arrow is shown in figure 4.5. It is only

slightly more complex than the agent solving the 8 symbols task. It has only 3 more

weights. Its obvious, that the two agents have only very little in common. What seems

necessary is the self connection of neuron 2, which makes it behave like a switch if a

certain threshold of activity is reached (strong positive feedback). The connection from

neuron 2 to neuron 1 is also similar, influencing the movement in y direction. Apart from

that, everything has changed. Neuron 3 has now 12 inputs which seems to make analysis

hard. Figure 4.6 shows though, that neuron 3 is always inactive for the two cases shown (a

third case will be discussed below). Neuron 2 and 4 on the other hand lead to the decision

for square or arrow. It is now discussed, what conditions lead to a positive activation of

these neurons. The weight vector and the input vector of neuron are respectively:

wN2 =
(
−0.76 −5.86 1.51 2.32

)T
xN2 =

(
x12 x13 yN2 yN5

)T
Correspondingly for neuron 4:

wN4 =
(
−5.50 4.56 0.89 1.67

)T
xN4 =

(
x5 x6 x21 yN4

)T
Here the time dependency was omitted for brevity. The bias is zero (non existing weights)

for both neurons (although the connection to neuron 5 serves as bias, as will be discussed

below). The activations of neurons 2 and 4, aN2 and aN2 are the dot products of wN2 and

xN2 and wN4 and xN4 respectively.
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Figure 4.6: As an example, two binarized images of a square and an arrow are
shown on top of this figure. Overlayed is again the movement of the retina. On the
bottom, the activations of neurons 0 to 5 is shown.

aN2 = −0.76x12 − 5.86x13 + 1.51yN2 + 2.32yN5

aN4 = −5.50x5 + 4.56x6 + 0.89x21 + 1.67yN4

To understand the behavior of the agent, the inputs can be examined. In the first time

step, all input fields of the retina are showing the background color (0.49). As can be seen

in the graph of the neural network in figure 4.5, neuron 5 has only one input coming from

index 0. This input field represents the bias. Therefore it is always 1 and the output of

neuron 5 is:

yN5(t) =

0 if t = 0

tanh(4.12) ≈ 0.99 else
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Figure 4.8: The retina movement and corresponding neuron outputs for a circle
image. It shows a small spike at time step 4.

The activation after the first time step is therefore:

aN2(t = 0) = −0.76 · 0.49− 5.86 · 0.49 + 1.51 · 0 + 2.32 · 0

= −3.24

The output is then

yN2(t = 0) = tanh(−3.24) ≈ −0.99

In the next time step the input field 5 sees a darker pixel with a value of 0.18. Additionally

the activation of neuron 2 from the last time step and the activation of neuron 5 now

contribute to the activation.
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4.1. Strategy one: One network for all symbols

aN2(t = 1) = −0.76 · 0.49− 5.86 · 0.49 + 1.51 · (−0.99) + 2.32 · 0.99

yN2(t = 1) = tanh(−2.44) ≈ −0.98

In step 3 the inputs for neuron 2 are still the same for both cases square and arrow. The

output of neuron 2 at t = 2 is:

aN2(t = 2) = −0.76 · 0.49− 5.86 · 0.18 + 1.51 · (−0.98) + 2.32 · 0.99

yN2(t = 2) = tanh(−0.62) ≈ −0.55

In step t = 3, the decision is made. While both input fields of neuron 2 see darker pixels

in the square image, they both see bright ones in the arrow image. The output of neuron

2 is:

yN2(t = 3) = tanh(0.27) ≈ 0.27

while for the arrow it is:

yN2(t = 3) = tanh(−1.78) ≈ −0.94

Now the self connection of neuron 2 determines the further development of its activity.

The following table (5.1) shows the values for yN2(t) for the next few time steps. The pixel

t square arrow
4 0.90 −0.94
5 0.95 −0.98
6 0.99 −0.99

Table 4.1: Activations of neuron 2

at input fields 12 and 13 cause the decision and neuron 2 lands in two different attractors

depending on the input image.

The same analysis can be done for neuron 4, which indicates the presence of an arrow.

As can be seen in figure 4.5, the weights coming from the input fields 5, 6 and 21 are

well balanced. The absolute value of the positive weights are almost the same as from
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4.1. Strategy one: One network for all symbols

t square arrow
0 -0.02 −0.02
1 0.93 −0.07
2 0.91 −0.92
3 0.90 −0.91
4 0.90 −0.90
5 0.07 −0.90
6 −0.86 −0.90
7 −0.99 −0.90

Table 4.2: Activations of neuron 4

the negative ones. So if all input fields see the same input, the activation of this neuron

stays the same as before. The self connection maintains the activation of the last time

step. Additionally the weights of input fields 5 and 6 are very strong, so if their inputs

are not the same, they force the neuron’s output in positive or negative saturation. Table

4.2 shows the neuron’s output for 8 time steps. As shown, as soon as input field 5 sees a

dark pixel, the neuron’s activation rises very fast. The activation is then maintained for

4 time steps in the square case and until the end in the arrow case. Input field 6 sees the

dark pixel in time step 5 and 6 in the square case. One could assume, that this strategy

would probably not work in case of a smaller square. But a careful analysis of various

different cases showed, that several different strategies evolved in this rather simple neural

network. An example is shown in figure 4.7, where the dark pixel at input field 21 gives

the final push to negative activation of neuron 4.

Similarly there exist several strategies for the arrow image. In the given example above,

the neural network depends on the absence of the dark left bar of the square.

Now the network for the circle output at neuron 3 could be analyzed in the same way.

This neuron seems the most complicated one, since it has 10 different inputs. Unfortu-

nately this neuron is almost never active. Even in the circle images is stays at negative

activation levels. There are several cases though, where it shows activation spikes, as

shown in figure 4.8. The outputs of neurons 2 and 4 are zero, so they correctly indicate

the absence of a square and a circle but the output of neuron 3 also stays zero. It shows

only one spike at time step 5. The weights of neuron 3 are very unbalanced with the sum

of absolute values of the negative weights being almost double the amount of the posi-

tive ones. Therefore the neuron has a strong negative bias when all inputs see the same
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Figure 4.9: This recurrent neural network solves the real image task to a satisfactory
degree. It consists of 6 neurons and 21 weights.

pixel values. So even if the neuron’s activation switches to positive values triggered by a

specific pixel arrangement like in the circle image, the activation can not be maintained.

In the next section, it is discussed, how the network can be changed to solve the task

successfully.

4.1.4 Original images of real symbols

Again 30 individuals were chosen to form the first generation for the next task. Now the

agents see the original images and have to decide if there is a square, an arrow or a circle

in the image. One agent, which is descended from the agent presented above is shown

in figure 4.9. Some details like the structure of neuron 4 and its inputs remained the

same, other parts are completely different. The rather complicated structure of neuron 3

almost entirely vanished leaving it only with the bias and one connection to input field

20. It will be shown, that this makes the recognition of a circle impossible. The number

of connections of neuron 0 increased which results in a more ”sophisticated” movement
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Figure 4.10: The final task consists of original images. The square and the arrow
from the example before are used again for this network.

pattern. The same two example images as before, now without binarization, are shown

in figure 4.10.

Compared to the binarized task, the movement of the retina is now less influenced by the

pictured symbol. Only in the square case, the horizontal movement (which corresponds

to the output of neuron 0) is slowed down once in the second time step. Apart from that,

there is a straight movement from top left to bottom right with the decision for square

or arrow made on the way. In the following paragraphs, the neural network is examined

from a different perspective. Although the values of −1 and +1 cannot really be reached

by the neuron’s output, due to the tanh, in the next paragraphs, it is referred to these

values as the minimum and maximum values of the output.

Looking at the temporal evolution of a given neuron taking various conditions into

account (in this case the input values that come from brighter or darker pixels), the

network dynamics can be better understood. From figure 4.11 it is obvious, that neuron 2

has 2 attractors depending on the inputs and on the current state. The temporal evolution

of the neuron’s output ends up in either −1 or +1. It is obvious that once the neuron
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Figure 4.11: The figure shows the output of neuron 2 over the range of 10 update steps. These update
steps are not starting at 0. This means, that the output of neuron 5 is already at 0.99. The different
lines in the plots correspond to 21 different starting values ranging form −1 to +1 in steps of 0.05. The
top two figures show the temporal evolution for the same pixel value on both input fields (dark on the
left, bright on the right). The bottom left corresponds to a dark pixel at input field 6 and a bright one
at input field 13 and vice versa is shown on the right.

is in the positive realm, it ends up in the +1 attractor. Only for the situation shown

in the bottom left, a dark pixel at input field 6 and a bright pixel at input field 13, the

activation can get negative and the neuron ends up in the −1 attractor. So only if the

neuron’s activation is already negative and it then sees this specific pixel configuration

the −1 attractor can be reached. In figure 4.11 the first time step is omitted. Instead

21 possible activations are considered. But the first time step is important to understand

the patterns in figure 4.10, since the activation of neuron 5 is 0 at this point. Therefore

neuron 2 does not get the strong positive bias from neuron 5, which leads to the following

activation:

oN2(t = 0) = tanh(1.69 · 0.49− 7.99 · 0.49 + 2.51 · 0 + 4.15 · 0)

= tanh(−3.09)

≈ −0.99
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In the next time step both the input fields see again bright pixels which lead to:

oN2(t = 0) = tanh(1.69 · 0.49− 7.99 · 0.49 + 2.51 · ()− 0.99) + 4.15 · 0.99)

= tanh(−1.46)

≈ −0.90

The value of −0.90 is therefore the starting point with which the further development

using figure 4.11 can be examined. In the square image, input field 6 sees a bright pixel

while input field 13 sees a dark one. This corresponds to the bottom right graph. Clearly

the neuron ends up very fast in the +1 attractor. For the arrow image, input field 6 sees

a darker pixel than input field 13, which keeps the activation in the negative realm. In

the next step, it is the other way around. Now one would expect to see a strong positive

activation. But since the values of the pixels are somewhere in the range between 0.15

and 0.52 for the original image (note that 0.18 and 0.49 for the binarized images were

mean values), the behavior of the neuron is somewhere between the bottom left and the

top right graph. This is exactly what can be observed in figure 4.10, where the output of

neuron 2 gets a little bit more positive, but then goes back to the attractor in −1.

Unfortunately the behavior of this network for the circle image is even worse than the

binarized version. As figure 4.9 shows, neuron 3 has only 2 inputs. The first one is a

strong negative bias and the second one is a negative input from input field 20. Clearly

this neuron can only be at negative one all the time. Since the neural network analyzed

in this section is one of the more successful ones, further ideas to handle these tasks had

to be developed. One other approach is described in the next section.

4.1.5 Results and discussion

The neural networks presented in this section were evolved using increasingly complex

tasks. In a total of 70 experimental runs with an average of approximately 5000 genera-

tions, only 8 experiments ended with satisfying results. These 8 runs ended with networks

which ranged in size between 6 neurons with 20 weights and 21 neurons with 92 weights.

The success of these networks ranged between a 0.52 and 0.73 accuracy in predicting the

right symbol in the test images. Most of the time they were able to detect 3 of the 4 sym-

bols with very good accuracy but failed to detect the last one. A part of the remaining 62
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experimental runs were already stopped at the binarized task, because their performance

was not promising. But the majority did perform well on the ”training” images but were

not able to generalize to the test images. This problem could probably be solved by using

a lot more training images to evolve the networks.

4.2 Strategy two: One network for each symbol

In the course of exploring the evolution of neural networks which can discriminate all 4

symbol types, namely square, circle, arrow and void (in the the rest of this thesis, the

word void is used to describe the absence of symbols in the image). It was found, that

only a few networks evolved, which solve this task to a satisfactory degree. As a matter

of fact, the number of trials with no useful result exceeded the number of trials with

useful results by a factor of nearly 10. One way to counteract this, would be to tune the

hyperparameters. Another completely different approach is presented in this section.

For an learning scenario it would be very useful to be able to learn new symbols without

the need to evolve totally new networks. To get around this, smaller networks which are

specialized on only one symbol has been evolved. These specialized agents discriminate

only one symbol against all others. In that way, if the agents are robust enough, new

symbols can be added and only the agent responsible for recognizing this new symbol

has to be evolved. For every new image, all agents give a vote on how much they ”are

certain” that their corresponding symbol is shown.

In the next paragraphs, 4 small networks are presented, which recognize void, square,

arrow and circle quite well. Neuron 0 and 1 handle again the horizontal and vertical

movement. Now only one additional neuron is required to indicate the presence or absence

of the symbol at hand. Neuron 2 is dedicated to this task. So for all the following networks,

a positive activation of neuron 2 indicates the presence of the symbol for which the network

was evolved and a negative activation indicates its absence.

4.2.1 When no symbol is present (void)

The first case which will be analyzed is void, or the absence of any symbol. Figure 4.12

shows one of the agents solving the task perfectly. For all test patterns the output of

neuron 2 either is +1 if no symbol is in the image or −1 if there is a symbol. Two
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Figure 4.12: The neural network evolved to indicate the absence of any symbol is shown on the left. On
the right are shown two corresponding typical movements of the retina and the outputs of the neurons.
On the top right for a square image, which results in a negative output of neuron 2 and on the bottom
void which results in a positive output.

example images are shown in the right part of the figure. Neurons 0 forms a simple

oscillator by having a strong negative self connection and a positive input. The negative

feedback connection leads to a switch from positive activation to negative activation and

vice versa in every time step. The positive input keeps the oscillation between +1 and

approximately −0.2 for bright pixels, which results in a movement to the right. When a

dark pixel is found, this input is weakened so that the oscillation reaches negative one.

This oscillating pattern is forced onto neuron 1 over a strong connection. This leads to

the same, but phase shifted oscillation in neuron 1. This neuron also has a small input

connection (negative in this case), which leads to an increase of the amplitude in negative

direction. This can be seen in the bottom figure, where the output value of neuron 1

oscillates between 1 and approximately −0.3. Together this results in a movement from

top left to bottom right with an oscillating ”searching” pattern until some dark pixels are

found. If dark pixels are found both neurons oscillate between +1 and −1 which leads

to an oscillation of the retina between two positions. Neuron two has a strong negative

bias and a lot of positive inputs. While on bright pixels, the inputs are much stronger
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Figure 4.13: The RNN agent which scans the image and indicates the presence of a square
with high activation of neuron 2. Again on the left side the network, in the middle to images
with the movement of the retina and the corresponding neuron activations on the right.

than the bias, so the output is at +1. As soon as some fraction of the input fields see

darker pixels, the bias gets stronger than the positive inputs and the activation switches

to the negative side. Neuron 2 has no self connection, so the state cannot be maintained.

Its activation is fully determined by the current inputs. Thus the whole functionality of

this solution depends on the movement pattern to stay on the dark pixels of a detected

symbol.

4.2.2 The square detecting network

The agent for the detection of a square on the other hand has exactly this self connection of

neuron 2 which enables it to maintain its activation. The agent, along with two examples

of its behavior, are shown in figure 4.13. The movement in vertical direction is always

the same, since both inputs to neuron 1 are very strong positive. The movement in

horizontal direction on the other hand depends on the symbol. With every time step the

two connected input fields get the same input and the retina moves to the right. Only

when the right input field (25) sees a pixel which is 1.76
1.26

= 1.40 times darker then the

pixel at input field 22, the movement in horizontal direction stops. This is the case in

46



4.2. Strategy two: One network for each symbol

Figure 4.14: The figure shows the bifurcation diagram of neuron 2 with the pixel value on input field
10 varied from 0.49 to 0.18 on the x-axes. There are two attractors present until the pixel value of
0.44 below which only one attractor remains. The bottom figures show the phase diagram for different
starting values of the neuron’s activation with a pixel value of 0.49 in the left graph and 0.30 in the right
one.

the square image. There is even a movement to the left, when the very dark pixel at the

bottom left of the square is reached. The behavior of neuron 2 can be explained best by

looking at phase and bifurcation diagrams. Figure 4.14 shows some examples. A good

start is the graph in the bottom left, which shows the temporal evolution of the neuron’s

output when all input fields see bright pixels with value 0.49. Clearly there exist two

attractors at approximately +0.8 and −0.8. When the neuron’s activation starts at 0, it

slightly transitions to negative activation over a long period of time. This can also be

seen in the first few steps in the arrow image in figure 4.13. What happens, when the

value of the pixel at input field 10 gets darker, can be seen in the top of figure 4.14. For

pixel values of 0.49 down to 0.44 there exist two attractors, but below that threshold only

one attractor survives and the output of the neuron ends up there. This is also shown in

the bottom right for an example pixel value of 0.30.
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Figure 4.15: As before, this figure shows the neural network on the left side, two examples of the
retina movement in the middle and the corresponding neuron activities on the right.

The figure would look very similar, if the pixel value of input field 14 is varied. Since

the corresponding weight is smaller, the bifurcation happens at darker pixel values with

the threshold at 0.30. In the square image after the third time step, both these input fields

see dark pixels for a few steps. And when the retina moves horizontally at the bottom of

the image, input field 10 sees dark pixels all the time, which leads to a fast transition to

the positive attractor. It also works for much smaller squares, since the amount of dark

pixel the retina hits always are enough. Only for a few cases, a circle is confused for a

square, if the left side of the circle is drawn to straight, looking like a square.

4.2.3 The circle detecting network

The solution for the circle image (figure 4.15) is a descendant of the void solution presented

above. The structure of the neural network is completely the same. Neuron 0 also has

a strong negative self connection leading to an oscillating behavior. This oscillation is

forced onto neuron 1, which also has one connection to an input field, although a positive

one this time. As opposed to the void agent, where the negative input helped to increase
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Figure 4.16: The neural network solving the arrow detection is shown on the left. The middle row
shows two example images with retina movement and the corresponding neuron outputs are displayed
on the right.

the amplitude of the vertical oscillation in negative direction, the positive connection in

this case decreases the amplitude. It even suppresses the oscillation completely, when

the amplitude of neuron 0 is too small (for example in the bottom right graph of neuron

activations in figure 4.15). The activation of neuron 2 depends only on the inputs. When

all pixel values it sees, are the same, its activation slowly transitions to negative saturation.

When on the other hand a dark pixel hits input field 4 or 20, it slowly transitions to positive

values. These two fields are positioned in such a way, that they are both at dark pixels

when the retina is positioned at the left bottom of a circle. Its obvious, that this solution

is easily confused, since a lot of symbols will lead to a positive activation of neuron 2. For

the void case described above, this solution is sufficient, since any symbol should lead to

a switch in activation, but here, this strategy is not working in many cases.

4.2.4 The arrow detecting network

The most complex network is the one solving the arrow task shown in figure 4.16. It

consists of 4 neurons and 17 weights. Again, neuron 2 has its self connection and a
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Figure 4.17: This figure shows again the bifurcation diagram of neuron 2. Here are also two attractors
present until the positive one disappears around pixel value 0.39. In the bottom again the phase diagrams
for different starting values of the neuron’s activation with a pixel value of 0.49 in the left graph and
0.30 in the right one.

negative bias. Although it has the most weights and looks like it would have complicated

dynamics, neuron 1 is the simplest to analyze. This is because it has a very strong positive

bias and the sum of the positive weights is greater than the sum of the negative weights

(absolute values). It therefore has always a positive activation around 0.9 or higher. The

next neuron to look at is number 3. It has a small negative input connection and a self

connection. It therefore acts as an integrator with the output slowly transitioning from 0

at t = 0 to negative one. It depends on the pixel values how fast this transition is, but it

ranges between 4 and 7 time steps for all images used. The negative activation of neuron

3 influences neuron 2 and neuron 0. Since the output of neuron 1 is already determined,

neuron 0 can now be analyzed. In the first time step, the strong positive weight from input

field 3 dominates the neuron’s activation. Beginning at time step 2, the inputs coming

from neuron 1 and neuron 3 overwhelm the input values from the retina fields. With

neuron 3 getting more negative, the activation of neuron 0 also transitions to negative
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values. This results in the curve like movement of the retina first a few steps to the right

and then the turn to the left again. The movement to the right stops earlier if the input

fields of neuron 0 sees darker pixels, because then, the connections from the other neurons

dominate even more. To understand the behavior of neuron 2, its again useful to look

at the bifurcation diagram and some phase diagrams. Figure 4.17 shows three graphs as

before, now associated with the arrow detecting agent. The phase diagrams in the bottom

look almost exactly like the diagrams in figure 4.14, except that the remaining attractor

in the bottom right diagram is now at negative one. Another more subtle difference can

be observed in the bottom left diagram. Here the curve corresponding to a starting value

of −0.05 first gets more positive before then moving towards the negative attractor. The

maximum value of this curve is the point, where the influence of neuron 3 overwhelms the

overall activation. As before, in the bifurcation diagram at the top one can observe, that

there are two attractors for input values from 0.49 down to approximately 0.39. Below

that, only the negative attractor remains. Compared to the square detecting agent, this

agent has a bigger tolerance to darker pixels. Before, the threshold was at 0.44 which

meant, that for only slightly darker pixel values than the very bright ones, the decision

for the neuron to end up in the positive attractor was made. Here the pixels have to be

much darker or they need to be presented longer for this decision. This can be seen on

the course of the activations in figure 4.16. In the arrow image, input field 3 sees a dark

pixel at time step 3, which results in a negative dip of the activation. But this is not

enough to kick the neuron into the negative attractor. In the square image on the other

hand, input field 3 sees dark pixels in at least two consecutive time steps, which seems to

be enough, so that the output ends up in negative one.

4.2.5 Results and discussion

The networks presented in the above section were evolved to discriminate only one symbol

against all others. This task is easier to solve and allows for more flexibility at the same

time. The system can be more open ended, for example, if new symbols would be added to

the discrimination task. The networks solving these tasks are smaller then the networks

presented in section 4.1. They therefore need less computations (see also next subsection).

The networks for detecting void, the square and the arrow are very good at their tasks.

For the test set, they have accuracies of 0.91, 0.86 and 0.81 respectively. There are some
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cases for the arrow detection network, where it confuses a square for an arrow, when the

square is sheared to one direction. The circle detection network on the other hand is not

satisfactory at all. As mentioned above, the strategy to depend only on the movement

and the occurrence of dark pixels at the ideal positions is too error-prone. For a lot of

circles in the training images, this strategy worked, but in the test set, a lot of false

positives occurred for squares and even some arrows. This network is still one of the best

performing ones with an accuracy of 0.72.

4.2.6 Evaluation of computational complexity

One important aspect in developing algorithms for robots is the computational complexity.

In this section the amount of computations needed is estimated and compared to a feed

forward neural network which was trained using the backpropagation algorithm. The

neural network agents, which were presented in this chapter are very small and lightweight

with respect to the number of required computations. To decide what symbol is shown,

all 4 networks were evaluated for 20 time steps. Table 4.3 lists the number of neurons

and weights for these networks. The 20 time steps are a very high number, since in all

Network No. of neurons No. of weights
void 3 11

square 3 8
circle 3 8
arrow 4 17

Table 4.3: The number of neurons and weights of the networks presented
in the last sections

experiments, the decision was made after 5 time steps on average. Only the circle network

needs up to 12 time steps. By stopping the updates when the network is in an attractor,

and the output does not change anymore, the necessary time steps can be reduced. This

would probably lead to an average of 10 time steps. The total amount of computations for

one time step include one multiplication and one addition for every weight and one tanh

for every neuron. Multiplied by 10 time steps the following numbers of computations are

needed.
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No. of multiplications = 10 · 44 = 440

No. of additions = 10 · 44 = 440

No. of tanh = 10 · 13 = 130

To compare the number of computations to a standard fully connected neural network,

different topologies were trained and evaluated. There was no topology found, which gave

comparable results. No feed forward network could classify all test symbols correctly. One

network with an accuracy of 0.78 had 500 inputs, 100 hidden units in the first layer and

20 hidden units in the second layer and 4 output units. These values result in a total

number of neurons of 124 and a total number of weights of 52080. To evaluate one image,

this approach needs the following computations.

No. of multiplications = 52080

No. of additions = 52080

No. of tanh = 124

While the evaluation of tanh has to be performed just as often as in the present approach,

the multiplications and additions are higher by a factor of about 120. Of course this is

only a very broad comparison, since the feed forward network does not perform so well.

Using a convolutional network would fit the task way better. Furthermore there was

no regularization, no dropout and no sophisticated loss function implemented. Another

reason for the poor performance of the feed forward network is certainly the small number

of training images.

Nonetheless, the presented approach using small recurrent neural networks in an active

vision setting clearly is advantageous regarding computation time. Additionally they seem

to generalize well after using only 60 ”training” images for their evolution.
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5 Real world application in the

learning scenario

As was described in the introduction of this work, the evolved recurrent neural networks

can be used in a learning game played by a human and a humanoid robot. This chapter

describes the framework for such a learning game and how the neural networks can be

used in it. Although the system was developed and is running on a humanoid robot,

for the framework which will be described here, the robot is not necessary. A camera is

sufficient.

5.1 Game setting and game script

The description of the bigger picture in the introduction assumes a learning game for a

human teaching a robot something on a whiteboard. In a reduced setting, a first step

to this bigger picture was implemented in form of a game. The game process is detailed

in figure 5.1. The robot (or a camera) is positioned in front of a whiteboard, such that

the image consists of the area of the whiteboard where the human teacher is about to

draw some symbols. The different situations of the game setting are handled using state

machines. In the following paragraphs, these situations are described in more detail.

State 1: Game start

In the beginning the image coming from the camera shows a white background. The start

of the game is initiated by initializing the game state machine. This can be triggered using

the keyboard, but can also be triggered by another external event like a voice command.

When the game starts, it is assumed, that only the background is in the image. Everything

that is already on the whiteboard will be treated as such. This allows elements, like a
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1.                                Empty Whiteboard             • Get background image

2.                               Somebody drawing            • Movement detected

3.                                Drawn symbol                     • Movement gone
• Detect change in image
• Get bounding box

4.                                Scan, predict,                       • Zoom in
consolidate                          • Perform NN-classification

• Count votes

5.                                Draw again                      • First symbol in memory

6.                                2 symbols,                            • Detect newer symbol
one newer

7.                                Scan, predict, ...               

Figure 5.1: The process of the learning game. On the left side
is sketched the situation the camera sees. In the middle are
key points describing the situation and on the right side the
procedures the system is using.

colored whiteboard eraser, magnets or the colored surrounding wall to be in the image.

These things will be treated as background and do not disrupt the game unless they are

altered in some way. The first step is then to save the current image as background image.

State 2: Drawing a symbol

Now the teacher enters the stage and draws a symbol on the whiteboard. This situation

is handled as a waiting state, as the symbol is not yet ready to be examined. The

waiting state is implemented by using motion in the image as indicator, that something

is happening. When the motion stopped, the wait state will be left to go to the analysis

of the symbol.

The motion detection is realized using difference images. The camera image is updated

with 12.5Hz. Every pixel It,i of the new image It is compared to the corresponding pixel
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It−1,i in the last time steps image It−1 and the difference is accumulated. This gives the

total difference Dt,t−1:

Dt,t−1 =
∑
i=N

d(It,i − It−1,i) (5.1)

where the difference in one pixel d(p1, p2) is the sum of the sum of absolute differences of

all color channels:

d(p1, p2) = abs(p1,Y − p2,Y ) + abs(p1,U − p2,U) + abs(p1,V − p2,V ) (5.2)

As long as the total difference Dt,t−1 is bigger than some threshold, the situation is

classified as 2. in figure 5.1. When the movement is gone, that means, the difference falls

below that threshold, the system stays in the waiting state for another 2 seconds and then

transitions to the third state.

State 3: Finding the symbol on the whiteboard

In this state, the current image is again still and the change in this current image in relation

to the background image, saved in step 1, is found. This is done via the difference in pixel

values. All pixels that changed significantly are marked as foreground. Using these pixel

values, the bounding box can be found. Assuming the set of pixels P containing all pixels

belonging to the symbol, the bounding box is found by setting the top left corner with

the minimal x and the minimal y coordinate (which not necessarily come from the same

pixel) and the bottom right corner with the maximum x and the maximum y coordinate.

These coordinates are used to configure the pixelpipeline to zoom in and get an image of

the symbol as shown in the previous chapters.

State 4: Classification of the symbol

Now the neural networks developed in this work are used to classify the symbol. All

networks of strategy two described in the last chapter get 20 time steps to ”look” at the

image. For evaluation a simple voting system was implemented: For every time step in

which the output value of neuron 2 is higher than 0.7, the corresponding symbol categories

votes are increased by 1. This is done for all (current) 4 networks. The symbol category
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Figure 5.2: Two example images with the activities of neuron 2
for the 4 different classifying networks.

with the most votes (highest number) wins. This means, the longer one neural network

indicates the presence of its corresponding symbol by high activation of neuron 2, the

more votes it collects. Networks which are sure that there symbol is present will stay

in high activity and get a high voting. On the other hand if the network is not sure,

its activation could oscillate between high and low activity and would therefore get a

lower voting. One example is shown in figure 5.2 for a circle on top and an arrow at the

bottom. The corresponding votes are listed in table 5.1 in columns circle 1 and arrow.

The votes show a clear tendency to the right answer in both columns. The votes give

Network circle 1 arrow circle 2
Void 3 5 3

Square 0 0 16
Circle 9 0 13
Arrow 0 17 0

Table 5.1: Votes of the networks

a correct answer for 64 of the 68 test symbols. This gives an accuracy of this combined

system of 64 out of 68, which is 0.94. In figure 5.3 one case is shown, where the answer

is not correct. The votes are listed in 5.1 in column circle 2. Admittedly, it is not a nice
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Figure 5.3: One example image with the outputs of the 4
networks. Clearly this voting failed as the square network gets
a high vote, whereas the circle network gets a lower vote.

circle, but here the confusion between network square and network circle is obvious. As

described in the above chapters, the circle network is easily fooled. It is not sure but

manages to oscillate itself into the positive activation and therefore collects only 13 votes.

The square network on the other hand goes to high activation almost immediately and

collects 16 votes. Here a mechanism to handle these close cases could solve the problem

but is left for future work.

States 5 to 7: How the game proceeds

After the voting, the system returns to a waiting state. Here it waits again for a movement

to occur and to stop again, which will trigger the whole process again. Currently, when

returning to the waiting state, the current image is saved as background. In that way,

new symbols can be drawn and only the new ones get analyzed. In this state, a memory

process can be included (see section 6.2) which allows for a higher cognitive process to

use the information. States 6. and 7. have then the same steps as described above.
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6 Summary and future work

This section summarizes the thesis by revisiting the main topics and results. It then gives

some ideas for future work including new ideas and suggestions for further development.

6.1 Summary

This thesis began with the picture of a humanoid robot in front of a whiteboard. In an

learning scenario a human teacher draws symbols on this whiteboard explaining something

and the robot is following the teacher. For realizing such scenarios, a module for processing

the drawn symbols was developed in this thesis. This was done using recurrent neural

networks as dynamic controllers. The networks determine the symbols shown in an image

through an active vision process. The attractor landscape of these networks leads to

a decision for a symbol, depending on the input image. To identify capable networks,

an artificial evolution procedure was implemented. Two different strategies have been

pursued to solve this task.

In the first strategy, neural networks which can distinguish between all symbols have

been evolved. It was found, that these networks are hard to evolve, even by using in-

creasingly more complex tasks to evolute gradually. The accuracy of the best performing

networks reached 0.73 for the test images. To increase this rather unsatisfactory accuracy

a second strategy was developed and tested.

The second strategy consisted of evolving four different networks. One network for each

symbol and one for the absence of symbols (plain background). This approach yielded

better accuracies between 0.81 and 0.91 for the detection of void, squares and arrows

respectively. The agent detecting circles only achieved an accuracy of 0.72.

The 4 agents evolved in the second strategy were then integrated in a real life applica-

tion. The outputs of all networks are computed and the decision for a symbol is made by
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a voting mechanism, in which the outputs higher than 0.7 are counted. With this voting

mechanism, a learning scenario has been implemented.

The overall computational complexity of this voting mechanism was compared to a

feed forward neural network trained on the same task (accuracy of 0.68). While both

approaches have a comparable number of tanh (or any other nonlinearity) executions, the

number of multiplications and additions of the feed forward network is 120 times higher

then for the voting mechanism. This is of course due to the high number of weights

involved. The usage of recurrent neural networks in an active vision scheme as described

in this thesis is therefore advantageous, because it needs considerably less computation

and therefore less energy while performing even better.

6.2 Future work

The neural networks for the detection of void and for the circle depend only on the visual

input and are therefore not very robust. As was mentioned in section 4.2.1, the correct

output of the network depends highly on the movement pattern of the retina. If there is a

symbol present, the retina needs to stay on the symbol for neuron 2 to have low activity

(which is the correct response). This behavior would be way more robust, if neuron 2

had a self connection. Then, the current state of neuron 2 could be maintained and a

detected symbol would push neuron 2 in the negative attractor where it would stay, even

if the retina is not on the symbol anymore.

Similarly for the circle network, a self connection of neuron 2 could be advantageous. To

identify and proof possible advantages of the self connection mechanism more experiments

are necessary. Surprisingly, the solution presented in 4.2.3 had the highest accuracy in

all experiments. It by no means a robust solution. With some more evolutionary runs, a

more accurate and robust solution can probably be found.

The learning scenario presented in chapter 5 can be extended in the following way: In

the current implementation, the image at game start is taken as background image. One

extension would be, to recognize already drawn symbols. This extension can be imple-

mented easily, since most pixel have the background color (white) and only a few pixel

deviate from this color. The color information would be sufficient to create a bounding

box and look closer. Another additional skill would be the tracking of lighting conditions.

Depending on the day time and light sources, the colors (also the white of the background)
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are considerably different. Over time, the robot could memorize different conditions and

adapt to them appropriately. In the current implementation, every time a symbol was

recognized, the current image is taken as background. A memory would be helpful to

know about the different symbols drawn at different points in time. This would enable

higher cognitive processes to reason about the temporal and causal relations.

For the learning scenario to be open ended it would also be desirable, if the teacher

could choose to introduce new symbols when needed. When a so far unknown symbol is

drawn, the voting should result in a low activation of all networks. Then it would be clear

that none of the three already known symbols is present and there is no void either. The

low activation of all networks could trigger a new evolutionary run, with the new symbol

as target. At least 5 to 10 images of a new symbol are needed. Using different settings for

the pixelpipeline, the robot can obtain these different images of the new symbol. Another

approach would be that the teacher introduces a new symbol by drawing it a few times.

With these images a new neural network can be evolved using the already present images

of the other symbols as non target examples. Then the voting mechanism also needs to

be adapted.

To make the learning scenario truly interactive and more flexible, the possibility of

feedback should be integrated. For example if a symbol was incorrectly categorized, the

human teacher could correct the categorization.
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